

A New Programming Paradigm
Agent-Based Programming Technology

Echo Messaging Systems, Inc.

Agent-based programming technology created by Echo Messaging Systems is at the heart of our ADIN AI framework.

ADIN, which means Anomaly Detection and Intelligent Notification, is a set of software technologies that enable rapid

development of highly complex and extremely stable software systems.

Programming paradigms such as structural, procedural, object-oriented, and functional paradigms describe ways to

organize specific programs solving problems in human readable formats that, through compilation, transform into

computer executable formats. Agent-based programming is a new paradigm where agents are highly structured and

configurable, are combined to run independently of each other, as parallel and/or autonomous processes to solve larger

complex problems. As the problems get bigger and more complex, agent-based programming does not equally become

more complex and unwieldy. Agents easily scale in number, in configurable options and adaptability without becoming

more difficult to manage.

Why Agent-based programming technology?
ADIN Agents run in containerized environments, which means the hardware requirements can be tailored and managed

via container orchestration systems, such as Docker and Kubernetes. ADIN has a UI browser where agents can be

monitored at high levels or drilled down to view all the specific actions taken.

ADIN Agents take on different types of tasks such as application, health, integrity, adaptive and more. A complex

software system we created called Safe Zones is built upon the ADIN AI framework. All system requirements that can be

performed autonomously are done via ADIN Agents, such as synchronizing data from CMS's, keeping Safe Zone contact

status up-to-date based on a complex set of expiring test results, and notifying via email, text and phone calls as needed.

ADIN UI Interface – Summary of ADIN Cells

The structure of an agent is two basic components: the triggering criteria and the action response. The agent-based

programming paradigm is to address complex requirements in terms of these two components. Additional agents can

interact and update agents and are known as adaptive agents. For example, an adaptive agent that monitors the how

many records are processed by an application agent, can have an action response to clone the application agent, and

update parameters into the original and cloned agents to divide up the workload. Health agents monitor agents to

make sure they are operating within statistical norms that are tracked, such as how often they fire and how much data

they process. These qualities define norms and the health agents triggering criteria fires when quantities go outside the

norms.

Triggering criteria is based on any set of data, time ranges, and/or GPS/location-based ranges. Data triggers can be

when something new, or changed is detected, which can come from any digital data source, such as a database, file

system files, and/or API's. API's can be connected to software systems or IoT systems.

Action responses are all the actions that happen in response to something - a new status will result in a new record, a

change in field value will cause a notification to be issued, or a device’s GPS location crosses into a geo-fenced region

will result in a status device being turned off.

Agent-based programming means the complex computation of 'what has happened, when and where', along with

requirements of 'what shall we do in response' has been distilled down to triggering criteria and action responses.

Agents become building blocks that run independently and autonomously from each other.

Proven Approach
Time is about 1/6th the time spent developing software using Agent-based programming. This is because coding time

centers on triggering criteria and action responses without the overhead of issues that make software more complicated

and slower to developing when using object-oriented and procedural approaches. Constraints such as 'one time only',

'one per update', 'daily', etc. are configuration settings. Agents are parameterized to provide access to Read-only or

Read-write parameter settings during configuration. Read-write parameters become available to other agents that

provide adaptation as their action.

Faster development time and better use of programming human resources result in lower costs, faster development

times and the ability to create more complex and adaptive software. This in turn means that costs are lower for clients

and projects delivered on faster time frames. In our experience with agent-based programming, we were able to

develop agent-based processes in one week that using traditional object-oriented programming paradigms would have

taken up to 6 weeks.

Safe Zones is an example, where ADIN agents perform all business logic tasks, such as data syncing CMS contacts, test

results and contact trace alerts. Safe Zone contact status changes are updated as new tests are added, and as time

Safe Zones Interface – Contact Page

passes to check for expiration dates. Also fever warning, O2 saturation warning, contact importing overages, GPS-based

contact tracing, etc. are also processed via ADIN agent-based programming. As more contacts and accounts increase,

complexity is handled by adding more agents that target specific accounts.

Tests and Vaccines can be added at any time, and expiration dates updated at any time. This continues to be a fluid

area, and agents monitor all contacts and test/vaccine expiration dates, and any that expire and cause the contact status

to change, such as 'Expired' or 'Quarantine' are notified by email, text and phone call. Additional agents can be quickly

added as new triggering criteria and action responses are identified.

Echo Messaging has 15 years of seeing agent-based programming work because all application programming systems

developed were based on agent-based processing and led to the creation of ADIN.

Beyond a Microservices Architecture
Microservices architectures have been increasing in number and dominance as an approach to creating complex

software. Agent-based programming is 15 years beyond microservices architecture. Echo skipped over a microservices

architecture and developed a full agent-based framework that provides structure and usability. Where microservices

wrap usable applications and small programs into separate units, ADIN’s agent-based programming has structure and

usability to combine, build, recombine at a much larger scale. ADIN can spin up very large numbers of agents and is

flexible in how agent technology is utilized to solve problems.

Agents can be independent and autonomous, where each agent is configured to solve their own piece of a large

problems through a divide-and-conquer approach. Or agents can be mass configured to attack problems where

hundreds, thousands, or more agents can be configured similarly with slight variations. Agents that fire more often can

be adapted to have more processing time and those not processing can be deactivated. This allows for processing to

adapt to the environment to make best use of processing resources. These are just two examples of how agent-based

programming go beyond current microservice architectures to bring about a shift in processing paradigms.

ADIN UI – Agent Details

