computing conference 2022

Quantum Computing in Agent-Based Technologies

Tammy R. Fuller and Gerald E. Deane Echo Messaging Systems, Inc.

Computing Conference 2022 15-16 July 2022 | London UK

Primary Goal: Create applications where we reduce <u>Complexity</u>, while increasing <u>Scalability</u>, <u>Reusability</u>, and <u>Integrity</u>

We solve common, but difficult problems using a divide-and-conquer approach using Agent-Based Technology.

ANOMALY DETECTION AND INTELLIGENT NOTIFICATION

ADIN Cell

Application Agents

Agents run in Docker Containers.

ADIN Agent has 2 key components: 1. Triggering Criteria 2. Action Response

Example Triggering Criteria:

- New/updated record or status in DB, API, IoT Device
- Timer interval
- · Distance interval
- Combination of Data, Time, Space

Example Action Responses:

- Create/Update record in another DB, API, IoT Device
- Notify via email, text, any digital communication method
- Update ADIN agent parameters
- · Clone/Create/Pause/Stop ADIN agents
- Compound, Series-based actions

Example Agent Types:

- Health Agents monitor other agents, checking agent metadata.
 Trigger: change in metadata stats. Action: Notify administrator
- Adaptation Agents monitor how much data is being processed in ADIN Cell.
 Trigger: measure quantity of data metrics. Action: Clone processing agents to increase data throughput.

By combining & recombining agents, we quickly create many different types of applications

ADIN™ AI Engine used commercially:

- Automated Notification Systems
- Emergency Safety Apps
- Data Syncs, Bridging Software
- Unstructured-to-Structured Data
- Container Technology
- Geospatial Applications
- IoT applications
- Dashboards for Cognitive Apps
- Digital Twin Technology

ADIN UI allows for full introspection of decisions

Opposite of Al's "black box problem"

Quantum Computers solve problems, such as Constraint Satisfaction Problems (CSP), that are difficult for Classical Computers to solve.

Search for minimum energy in a global system via QUANTUM ANNEALING

Quantum ADIN Agent formulates energy minimization model and connects to DWAVE API

 ADIN Quantum Web Service provide Python interfaces to DWAVE API


```
num_agent_types = len(agent_types)
total_load = sum(loads)
LPA = int(total_load / max_agents) ## a lower priority constraint than the other 2 constraints
cqm = ConstrainedQuadraticModel() ## create Constrained Quadratic Model
bqm = BinaryQuadraticModel('BINARY')
# Build a variable for each agent at each possible agent type
bin_variables = [[Binary(f'A{str(i)}_{str(j)}')for j in range(max_agents)]
                 for i in range(num_agent_types)]
## add following constraints to Constrained Quadratic Model
for j in range(max_agents):
    ## MUST: each agent has one agent_type
    cqm.add_constraint(quicksum(bin_variables[i][j] for i in range(num_agent_types)) == 1,
                      label='c1_one_per_agent_'+str(j))
for i in range(num_agent_types):
    ## MUST: each agent type is represented in at least 1 agent
    cqm.add_constraint(quicksum(bin_variables[i][j] for j in range(max_agents)) >= 1,
                      label='c2_agent_type_'+str(i))
    ## BEST: sum of loads processed by agents of same agent type are >= to load regs
    # for agent tupe
    c1 = [(f'A{str(i)}_{str(j)}', LPA) for j in range(max_agents)]
    bqm.add_linear_inequality_constraint(c1, lagrange_multiplier=1, label='load',
                                        lb=int(loads[i]), ub=total_load)
cqm.set_objective(bqm)
sampler = LeapHybridCQMSampler()
sampleset = sampler.sample_cqm(cqm, label='Optimize ADIN')
```


Agent Action Responses to iteratively divide along linear constraint dimensions to create formulated models fit limits of quantum computer

Agents decompose the problem space as action responses

As DWAVE solves each portion of the problem, greedy sort selects best answer during reconstruction

ADIN User Interface allows for introspection at all levels

Conclusion: Use proven Agent-based technology to leverage power of quantum and classical computing

- Interfaces to Quantum Computers are challenging and earlystage, limited to large research centers/corporations.
- Constraint Satisfaction Problems (CSP) are common, involving optimization, resource allocation, scheduling and routing.
- ADIN[™] provides access to building applications where CSP problems can be solved using quantum agents, along with traditional agents for classical computing.
- Building the best of both quantum and classical computing worlds.

computing conference 2022

www.echomessaging.com 401-475-9642 Rhode Island, US

THANKS! Any questions?

Gerald Deane CEO/President

gerald@echomessaging.com

Tammy Fuller VP/Chief SW Architect

tammy@echomessaging.com

