
Future of Information and Communications Conference (FICC) 2018

1 | P a g e

Anomaly Detection and Intelligent Notification

Tammy R. Fuller

Echo Messaging Systems, Inc.

Lincoln, Rhode Island US

tammy@echomessaging.com

Gerald E. Deane

Echo Messaging Systems, Inc.

Lincoln, Rhode Island US

gerald@echomessaging.com

Abstract—Applications and Operating Systems are programs

responding to stimuli to perform tasks on computers, and these

programs can be constructed in ways to minimize overall

complexity of the software lifecycle, by organizing tasks into

units that bring about a response and adaptation to stimuli. The

response is the task's main function, the stimuli are user

interaction, data source conditions, or time-based events, and

adaptation is an opportunity for the task to adapt to its

environment. Developing software using autonomous adaptive

agents in an intelligent system minimizes overall complexity by

organizing computing into reusable, scalable logical units that

are by nature parallelizable. Each autonomous agent has a

common core of virus resistant outer virtual casing by

continually comparing its core attributes against master copies

distributed via block-chain technology. Building upon research

and implementation of these concepts of using intelligent systems

using autonomous block-chain protected agents to rapidly create

commercial-grade software over a wide variety of domains, we

discuss in this paper how these concepts not only facilitate

application development but can also be used for operating

systems.

Keywords—intelligent systems; autonomous agents; artificial

intelligence; adaptive processing; self-organizing systems; self-

adapting systems; block chain ;software lifecycle; software

engineering;

I. INTRODUCTION

Creating software is a complex process of gathering
requirements, designing the components, implementing the
design and testing against the original specifications, followed
by maintaining for a long and fruitful software lifecycle. Each
step in this process requires hard won technical skill sets,
coordinated by management processes to orchestrate and
dovetail the myriad tasks to create software and hardware
systems that solve everything from remote surgery, to mars
travel, to smart weaponry, to ordering a pizza that a driverless
vehicle delivers fresh and hot upon demand.

Reducing the complexity to go from 'we need a system to
...' (fill in the blank) to having the software, hardware, user
interfaces, legacy data source connections, compliance with
regulations, among other things, to a functioning safe reliable
system that does what it needs to do, can be achieved through
design choices as we will show in this paper. However, to do
this in a timely fashion where reusability promotes
productivity, and expands to future capabilities of scaling
based on the environment is not only expected, but required as
Artificial Intelligence becomes ubiquitous, and Ambient

Intelligence will be pervasive and foundational to modern
living.

Through real-world experience, we tackle the challenges of
creating complex applications by using autonomous adaptive
agents in an intelligent system [1]. We propose that software
created using this approach of adaptive agents responding to
stimuli in a common framework to solve specific complex
tasks minimizes complexity over other design approaches in a
number of ways.

A. Waterfall

Waterfall design approach is comprised of the following
steps: requirements gathering, design, implementation and test.
Each step completes before the next is started. In practice, the
Waterfall approach is not common due to hidden requirements
revealing themselves during design, or worse during
implementation. This causes the entire waterfall process to start
over, resulting in delays from the original timeline.

B. Agile

To address the problems of waterfall, Agile cycles freely
and often through the four basic steps in a cyclic fashion. The
problem with this approach is sight of the overall process can
be lost due to frequent, small-scale cycles. Hidden assumptions
are revealed sooner, but larger-scale goals can be sidetracked at
each cycle, causing delays or worse missing requirements.

C. Hybrid

A hybrid approach [2] where agile-type cycles are done
between the first two steps of requirements gather and design,
followed by a onetime waterfall-type step to the second two
steps of implementation and test, has shown to improve
development timelines and eliminate late-revealed
requirements. The problem with Hybrid is there are no
viewable results until 40-60% of the way through the entire
timeline causing stress to key stakeholders.

D. Autonomous Agents/Intelligent System

Combining autonomous agents that solve key components
of a design, and imbuing them with the ability to adapt to the
specifics of their environment, such as the nature and amount
of data they are handling, by being inherently adaptive, as well
as scalable and parallelizable, results in applications that are
quickly implemented, which addressed the main problem of
the Hybrid design approach.

Future of Information and Communications Conference (FICC) 2018

2 | P a g e

Designing software using reusable autonomous agents to
implement specific applications takes a different approach
were requirements are organized around triggering criteria and
response actions. The process of determining how best to
organize processing units is typically a challenge [3], but our
approach of working in actual commercial applications
provides direction on how to best segment and organize the
agents.

Agents, being adaptive, will conform to their environment,
such as increasing or decreasing computing capacity in
response to data bandwidths. Agents, being inherently
parallelizable, will scale in response to their environment, such
as automatically replicating and distributing agents across a
network computing facility as they become available for load
balancing.

Over many years of creating commercial applications in a
wide variety of settings, platforms and domains, along with a
background in AI, we realized the benefits of creating software
using intelligent systems. We expanded the core concepts in
agents to include built-in virus protection and authenticity
checks using Block-Chain technology, as well as creating
agents specifically to monitor and mitigating for anomalies,
which could come from spikes in data, changes in underlying
hardware or networking, or any conditions and criteria where
human intervention should be considered for automated
systems.

Anomaly detection and intelligent notification form the
core tenets of ADIN 2.0, a platform for application
development that reduces overall complexity of the software
lifecycle.

II. AUTONOMOUS AGENTS IN AN INTELLIGENT SYSTEMS

Autonomous agents in an intelligent system are built from
one or more agents running in a common environment. This
means the agents are connected to one or more of the same
data sources and/or user interfaces. Agents can be of the same
type, configured differently or identically.

For example, in a notification system where the data source
is a web-hosted E-commerce system, an agent can detect a new
order. Configuration on the agent can determine if an agent
responds to orders of a particular type, such as a corporate
order vs. an individual order. At any point, more agents with
expanded/refined criteria can be added to the ADIN Cell, as
shown in Figure 1, which eases lifecycle maintenance.

A. ADIN Cell

An ADIN Cell organizes a set of one or more agents
together by common data sources and user interfaces to define
an application. All agents have 3 basic components:

 Triggering criteria - time, date, event, or any detectable
digital entity from tiny to complex can define the
triggering criteria

 Action - what happens when the triggering criteria is
detected. A notification is issued, a record is replicated,
business logic is performed, intermediate data is
created. Any response is possible

 Adaptation - logging is done here for statistical analysis
and any type of adaption such as adjustment of agent
configuration, frequency of checking the criteria. An
action about the agent itself or ADIN cell rather than
the specific criteria

Agents are grouped into basic types based on the data
sources they connect to and their responses and lend
themselves to reusability. Some example groups are:

 Time Based - agents that check every hour, every
minute, once a day or any function of time. Any data
source can be used. For example, an agent whose data
source is a back-office accounting system can check
every day at 8am for invoices overdue by 30 days and
send a friendly reminder. The same agent can also run
except it's triggered on 60 days or 90 days where the
reminders are more urgent.

 Geo-Location Based - agents can check for GPS
locations within a geo-fenced area. One agent can
monitor many areas or individual agents can monitor
their own specific area. This example shows the how
this approach lends itself to scalability and
parallelization.

 IoT Device Based - agents can monitor a data channel
where IoT sensed data is accepted. For example, an IoT
enabled washing machine can send periodic status
updates to a known data channel, where an agent can
monitor and notify when a near-term-failure status is
detected.

Fig. 1. ADIN 2.0 Cell components

Figure 1 shows a graphic representation of an ADIN Cell
with multiple agents and how it can interface with many
different types of data sources and user interfaces. The

Future of Information and Communications Conference (FICC) 2018

3 | P a g e

components shown in Figure 3 are described further in this
section.

Fig. 2. Magento-FedEx-Accounting ADIN Cell

Figure 2 shows a graphic representation of an actual ADIN
Cell with agents, each uniquely identified by ID number, that
detects new Magento orders and replicate them into a back-
office accounting system. Additionally, another agent monitors
a FedEx data source and will update the orders in Magento
with specific shipping information when the orders ship.
Components and Agent Types

The various types of components in an ADIN Cell are
represented by different icons as shown in Figure 3. There is
no limit to the number of agents.

Fig. 3. ADIN Cell High level components

An ADIN cell can be installed on one computer/server,
virtual server, or the agents can be distributed across many
servers based on the needs of the application and the
processing environment available.

Fig. 4. Additonal ADIN Cell compoennts

Figure 4 shows there are other types of agents and
components that are components to this design approaching.
The user interfaces are designated into four types: web, mobile
installed and non-traditional, such as, text-based or voice-based
user interfaces. Figure 6 (next section) shows an example
where multiple user interfaces are used as part of as greater
application using common agents and data sources.

Applications can reside on single server environments with
RAID 1-10, or without RAID, as well as in virtualized and
non-virtualized environments. Agents and cells in a virtual
environment are designated as Virtual Agents or Virtual
machine cells.

B. Health and Integrity

Automated and autonomous systems work quietly and
efficiently until something unexpected happens and then full
insight into all processes is often required. For example, an
automated datasync can for years be running where the
triggering criteria is a new order in an E-commerce system, the
action is to create an identical record in the back-office
accounting system and the adaptation is to log for statistical
processing such as timestamp, and amount of data processed.

Health agents monitor the resulting logs and its triggering
criteria are detecting spikes and valleys in timestamp or data
amounts in the logs (for example by looking for peaks in the
second derivative or mean/mode/std deviations crossing a
predetermined boundary) A valley could indicate a hardware or
network failure, where a peak could indicate a denial of service
attack, or a sudden increase in sales due to some external event.

Future of Information and Communications Conference (FICC) 2018

4 | P a g e

In either case, health agents will detect the occurrence and can
respond a number of ways, such as:

 Notify administrators via text/email/push immediately

 Shut down the ADIN cell, one or more particular
agents, data sources and/or user interfaces

 Increase processing bandwidth by replicating the ADIN
cell, one or more particular agents, and/or user
interfaces.

 Start or stop a particular set of agents in response to the
peak or valley.

Health agents can have standard predefined configurations,
to particular triggering criteria, such as notify the administrator,
update a heartbeat dashboard and increase bandwidth when a
spike in orders is detected up to additional 25%. An additional
heath agent in the same ADIN cell can trigger on the same
criteria but only after 25% increase as been detected, as which
an escalated notification is issued. This allows for
predetermined responses to be added, and modified as a
system's environment is better understood, which happens after
deployment.

When hardware failure is the cause of the anomaly such as
the Health and/or Integrity agents are returning a failure for one
or more particular applications agents, these agents can quickly
be replicated and their original copies set to dormant.

III. AGENT INTEGRITY USING BLOCKCHAIN

Agents can be replicated many times with configuration
variations or identical copies. To maintain integrity of the data
in the face of hardware failures, network failures, software
bugs, failed upgrades, failed deployments or outright attacks on
data and systems, ADIN Cells include at a foundational level,
Integrity agents, that store and compare master copies of the
agent metadata, such as configuration settings, DLL signatures,
timestamps, and any data that lends authenticity and integrity
that each agent is working as expected. Figure 5 shows this
process.

Fig. 5. Blockchain to store encrypted Agent metadata for verification

Blockchain technology is used to hold the original master
copy of agent metadata. Blockchains [4] are publically
available ledgers that are resistant to tampering due to the
nature of being both decentralized and publically available.
Blockchains were first used to represent the digital currency
Bitcoin. In addition to digital currently, blockchain technology

is being for holding any information that has intrinsic value
such as contracts, trading records, public records such as voter
IDs and birth/death certificates, private records such as wills
and trusts, digital keys, and many more. The decentralized
nature means that many copies of transactional data is stored in
a widely distributed fashion.

To tamper with blockchain data is considered an extremely
difficult task, since every copy at every location would have be
tampered with exactly the same way at exactly the same time.
Integrity agents continue to compare agents against the master
copy to ensure that the code has not been modified by virus or
any other external nefarious attack. The triggering criteria of
Integrity agents are when Blockchain master copy checks don't
match, at which point the master copy could reinstall based on
the Blockchain metadata. In addition, notifications can be
issued via text message, push alert and email, as well as health-
related dashboards can be updated.

Integrity Agents are a foundational component to guard
against unexpected environmental failures, as well as to act as
a shield against explicit hacking-type attacks, which sadly is
now commonplace. Having a built-in immune system, with
predefined responses, provides insight into the anomalies that
occur in automated systems, when that insight is needed.

Furthermore, by making the integrity and health agents
based on the same technology as the application business logic
means that the response to anomalies will happen in the same
time-scale. If an application is running normally, it will be
quietly processing the background. If something goes wrong,
for example, a data source goes offline, at the speed at which
an order is processed, the system knows an anomaly occurred
and will respond immediately, verses, a human watching logs
or a dashboard, or responding to an alert notification manually.
Humans aren't able to respond in the same time-scale as
computers, so the anomaly response must match the overall
system processing speed to be most effective.

IV. SCALABILITY

An advantage to designing and implementing complex
software using autonomous agents in an intelligent system is
that agent scalability is built-in by design.

Fig. 6. Push Notification based on Geo-Fenced Regions

Future of Information and Communications Conference (FICC) 2018

5 | P a g e

For example, an ADIN Cell, as shown in Figure 6, is
comprised of web and mobile applications to define Push
Notification Channels based on users crossing into predefined
Geo-Fenced regions.

Agents can be configured to monitor all defined geo-fenced
regions. Once the number of channels crosses a boundary, the
agent will replicate and refine its search criteria. As usage
increases, the agents' adaptation will cause them to replicate.
Likewise, if usage of the push channels decrease, the agents'
adaptation can cause them to go dormant until needed again.

By organizing business logic into agents based on their
triggering criteria, specific response and adaptation, this
approach to designing software is less complex by design.
Replicating agents to response to an increase in data processing
needs or to refine the search space is something that can be
coded into the agents' adaptation or into a health agent and this
flexibility means that the approach can be a policy level
decision.

Resources are used in a scalable way as well. For example,
an application can start with fewer developer resources where
feature agents are developed. Even after running against live
data sources, refinement of the agents or more complicated
agents can be developed and added to an existing ADIN cell.

V. PARALLELIZATION

Like scalability, parallelism is built-in by nature and
parallelization is achieved by the agents' adaptation or via
health agents depending on requirements or preference.
Hardware is better used when the underlying software
components are individual processing units. One of the key
functions of an operating system it to allocation the system
resources as efficiently as possible. A multi-core system will
be better used by agents that are already naturally segmented
along processing units.

In a highly parallelized computing environment, the
performance is even better, again because the work of
parallelizing an application is already started at the design level
by organizing processing units based on the triggering criteria
and associated response and adaptation.

Fig. 7. Health Agents

Health agents (Figure 7) again can take up the task of
seeking ways to improve overall performance. For example, a
health agent can monitor the environment for opportunities to
where adjusting the time intervals agents are checked for
triggering criteria could be improved. If multiple agents are

connecting to the same data sources, health agents can look for
patterns and modify agent timing criteria.

Fig. 8. Health Agents clone additional Alerts on demand

Using the Geo-Fence Push Notification application from
Figure 6, parallelization can occur if expanded capacity is
needed or if resources became limited due to a hardware or
network failure. In both case, the Heath Agent is triggered. For
example, a Health alert can monitor the number of active geo-
fenced regions and can be triggered every time a new one is
detected. It will replicate the basic Geo-Fenced alert from 2B
in Figure 8, and will clone to alerts 3A, 3B, 3C, and 3D
representing 4 new geo-fenced regions. Each alert will track
and communicate with recipients detected within their region.
Regions can be static in a fixed location, dynamic such as
tethered to a vehicle or train, as well has may have specific
altitude, such as floors 10-20 of a high rise.

A. Power Consumption Profile

A power consumption profile can be generated where for
each point in time (every millisecond, second, minute,
depending on preference) the power consumption is calculated
that reflects how hard the Cell environment is working. As
shown in Figure 9, when the power consumption crosses a
threshold, this can be the triggering criteria for a Health agent
that causes the cell to be replicated along with all its agents into
another server or virtualized environment. The opposite can
occur, when the power consumption drops below a threshold,
the agents can be set to a dormant status since they are no
longer needed.

Future of Information and Communications Conference (FICC) 2018

6 | P a g e

Fig. 9. Power consumption profile used by Health Agent

VI. AI OPERATING SYSTEM

After numerous positive experiences with ADIN Cells for
creating complex applications over many years, the next
logical step is to consider this approach for operating system
level functions. We posed the question, this can approach
improve OS level performance. Over the years, hardware
consistently made steady improvements to processing speed,
where software, on the other hand, at all levels from
application down to OS, became more and more complex.
Increased processing power still resulted nonetheless, but if
software was to be improved and streamlined the performance
leap could be enormous.

We have dedicated efforts to investigating what an AI-
based OS would entail and using this approach has a basis has
a lot of advantages as outline in the previous sections. If
applications were instead OS-level functions, and components
were organized around the OS-level triggering criteria and its
associated response and adaptation, an AI-OS would gain the
same benefits in scalability, parallelization, reusability,
improved resource allocation and overall reduced complexity.

Fig. 10. Operating Sytsem level Cells and Agents

Figure 10 shows how multiple ADIN Cells could run
within the same server environment where each cell in
maintaining its own integrity, as well as computing / data
health. An ADIN cell could (highlighted in orange) could take

on additional monitoring tasks that worked across the
individual ADIN applications and OS elements to provide OS
level coordination. As shown at the application level, cells and
agents by design can flexibly work in a single or distributed
environment, OS level tasks can likewise benefit from work
across hardware and networking boundaries.

VII. IMPACT AND FUTURE DIRECTIONS

Artificial intelligence mimics human activity and
historically involves huge search spaces and use of heuristics,
from playing chess to understand speech to finding the
defective part on an assembly line. The term 'artificial' is
waning, as it should and instead both technical and non-
technical people alike are realizing AI applications are highly
automated, often invisible and extremely pervasive. As
humans no longer do tasks that automated systems are doing
instead, people nonetheless need to stay involved and assist in
decision points particularly during anomalous events.

Certain events handled by automated systems comes with
problems that some posit are existential to humanity. The
processing rate and reaction time when something goes wrong
without being detected by humans, has the potential to cause
harm to life. This is the main motivation for creating an
autonomous agent-based platform. Where most of the time it's
used to process a tremendous amount of mundane but
necessary work that humans no longer need to perform, but
more and more processes are automated that have greater and
greater impact on human life.

As is typical, information systems are developed faster than
regulatory systems can keep up. Every designer wants to avoid
unintended harm, but the rate at which automated systems are
being created is extremely fast, and many fear that safety
systems are not in place at a foundational level [5]. To create a
system without a self-healing aspect or without the ability for
mitigation in the face of the unexpected is why AI-based
system can potentially cause harm. Automated systems will
continue to do more but it's imperative that the health and
integrity of these systems be a foundational component.

A. Applications

Future direction of the work describe here, is to continue to
implement new applications where Health and Integrity checks
are integral, including new systems such as Text4Tow where
users send text messages to be automatically matched with
nearby auto services. The agents to coordinate workflow and to
do all the back-and-forth notification were already developed
and in the basic Agent Library. A few key business logic
relationships were created along with application specific
templates. This example using this design approach took under
two weeks to create a working test system that is fully
functioning. The concepts for automated resource matching
are transferable to other domains.

The Text4Tow Application as shown in Figure 11, uses a
text-messaging based user interface where the user texts 'tow
me' or 'need gas' or some other natural language command. An
agent monitors for new commands and sets up the request after
getting the current GPS location. Another agent is continually
monitoring for new requests and matching them against open
service truck vendors who are pre-registered. When a match is

Future of Information and Communications Conference (FICC) 2018

7 | P a g e

found, the service truck is emailed, texted and if desired,
phoned with a message saying where the person in need is and
their requested service. A quick text reply by the service truck
('a' to accept, 'no' to decline) causes another agent to send out
the notifications to the customer that a match has been found,
and a link to track the service truck in real type.

Fig. 11. Text4Tow

This entire application is based on agents monitoring
triggering criteria and performing their associated actions, such
as determining GPS-to-GPS distance to find a nearby match or
sending out notifications. These agents are quickly
configurable if more notifications or different criteria are a
better fit for the application. The entire process of gathering
requirements, designing implementing and testing is a much
quicker process when everything is oriented around triggering
criteria, and their associated actions. For this application, no
new agents were required, as all were already in existence in
the agent library.

B. Developing OS-level components

Developing the OS level concepts and eventually creating
an entire operating system using ADIN cells is a high priority.
Based on how agents can dynamically respond to the
environment based on hardware, network, data and other
processes, OS level components will be inherently scalable and
parallelizable, and we expect that increased performance will
result from this effort. Software has long depended on
increases in hardware performance to allow for more and more
complex computation. By creating software components for
both application- and OS-level processing, using ADIN cells
increases overall computational performance with no other
changes is something we anticipate.

C. Parallel Architectures

Experimenting with how parallel architectures run ADIN
cells is an exciting area since the types of applications
developed using this approach aren't traditional parallel
algorithms such as image processing where data is can be
locally processed. However, parallel architectures should
reveal the true power of the ADIN cell approach to designing
complex, scalable software since by design the components are
organized around localize data stimuli.

VIII. CONCLUSION

This paper talks about how we have lowered overall
complexity of application development and resource usage by
taking this design approach. Using a software engineering
methodology based on a Hybrid method, this approach takes
the best aspects from Agile, but implements in an intelligent
system using autonomous adaptive agents as the core
processing units. Requirements and design tasks become
centered around triggering criteria and response actions,
followed by an adaptation phase where criteria can be modified
to best work in the current data processing environment. The
result of this work is a reproducible process where highly
complex reliable applications are created very quickly, taking
days or weeks instead of months and years. The resources to
create sophisticated software, human resources in particular,
are very limited, and yet software automation is increasing at
exponential rates.

Automated systems are being created so fast that there is a
real danger to human safety in the event when something goes
wrong, due to unknown environmental conditions, such as
unanticipated data, or suddenly losing network connectivity, or
incorrect implementation or deployment. These real-world
scenarios happen frequently. Where automated software runs
silently and often invisibly in the background, when something
goes wrong, damage to data or human safety may occur before
it's detected and corrected. This paper outlines how the
intelligent system has at a foundational level Health and
Integrity checking agents consistently monitoring itself and
check for data inconsistencies to verify all authentic versions of
agents are running. If any sort of hacking is detected, copying
back from a known-good master copy stored using difficult to
tamper blockchain technology is done immediately.

Automated systems with built-in anomaly detection and
intelligent notification using an AI-based intelligent system and
autonomous adaptive agents continues to show that robust,
maintainable, sophisticated software can be created quickly
using minimal resources, thus minimizing overall complexity
over the software lifecycle.

REFERENCES

[1] T. R. Fuller and G. E. Deane, “Creating Complex Applications via Self-

Adapting Autonomous Agents in an Intelligent System Framework,”
2015 IEEE 9th International Conference on Self-Adaptive and Self-
Organizing Systems, pp. 164–165, Sep. 2015.

[2] T. Fuller, “Design-Analysis Centric Method for Creating Sustainable,
Stable, Complex Systems". Proceedings of the IEEE ITSC 7th
International Conference on Intelligent Transportation Systems,
Washington, D.C, Oct 3, 2004

[3] Li, B., Yu, H., Shen, Z., Cui, L., & Lesser, V. R. "An Evolutionary
Framework for Multi-Agent Organizations", 2015 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT'15), Singapore, Dec 6-9, 2015

[4] Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S.
(2016). Bitcoin and cryptocurrency technologies: a comprehensive
introduction. Princeton and Oxford: Princeton University Press.

[5] Musk, E. (n.d.). An Open Letter to the United Nations Convention on
Certain Conventional Weapons. Retrieved September 01, 2017, from
https://futureoflife.org/autonomous-weapons-open-let

